Quantum Heat Engine Simulated on Superconducting Qubits
Nick Materise, Mallory Zabrocky, and Eliot Kapit
Colorado School of Mines
Department of Physics

Classical vs. Quantum Heat Engines

Classical Otto Engine Cycle (Internal Combustion)
[Quantum heat engine.](http://www.nist.gov/itl/metrology/quantum/)

Many Body Localization (MBL) Engine Cycle

Bose Hubbard Model

Multilevel Hamiltonian
\[H = -J \sum_i \langle \beta_j | \hat{a}_j \rangle + \text{h.c.} \]
\[+ \sum_i (\delta_i - \mu_i) n_i + \frac{U}{2} \sum_i n_i (n_i + 1) \]

Disordered Phase

Mott Insulator Phase

Superfluid Phase

Hardware Mapping

Coupled Transmon Qubits
- Implements Bose Hubbard Model
- Defaults to Mott Insulator (\(J < U \))
- External flux tuning can access the disordered phase, control \(h(t) \)

Experimental Device

Simulation of Adiabatic Strokes

- Generate disorder realizations \(h(t) \)
- Exact diagonalization of ETH and disordered (DIS) Hamiltonians

Disorder Realizations

Annealing Schedules

Results

Model Parameters
\[J/2\pi = 10 \text{ MHz}, \ U/2\pi = 250 \text{ MHz}, \ h = [-10J, 10J] \]

Expansion Stroke \(\tau^+ \sim \tau \)

Compression Stroke \(\tau^- \sim \tau^0 \)

Future Work

- Repeat the analysis using the transverse field Ising model as the base Hamiltonian and adding disorder to \(J, h \)
- Compute the heat and extract the work done by the engine using the density matrix and Hamiltonian expressions
- Discuss details of simulating the heat engine on superconducting qubits / quantum annealers with experimental collaborators

Acknowledgements

We acknowledge funding from the National Physical Sciences Consortium Graduate Fellowship and NSF Grant PHY-1653820.